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Abstract: The anomalous dimensions of local single trace gauge invariant operators in

N = 4 supersymmetric Yang-Mills theory can be computed by diagonalizing a long range

integrable Hamiltonian by means of a perturbative asymptotic Bethe ansatz. This formal-

ism breaks down when the number of fields of the composite operator is smaller than the

range of the Hamiltonian which coincides with the order in perturbation theory at study.

We analyze two spin chain toy models which might shed some light on the physics behind

these wrapping effects. One of them, the Hubbard model, is known to be closely related to

N = 4 SYM. In this example, we find that the knowledge of the effective spin chain descrip-

tion is insufficient to reconstruct the finite size effects of the underlying electron theory.

We compute the wrapping corrections for generic states and relate them to a Luscher like

approach. The second toy models are long range integrable Hamiltonians built from the

standard algebraic Bethe ansatz formalism. This construction is valid for any symmetry

group. In particular, for non-compact groups it exhibits an interesting relation between

wrapping interactions and transcendentality.
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1. Introduction and discussion

In [1] the one-loop spectrum of single trace local gauge invariant operators made out of

the scalars of N = 4 supersymmetric Yang-Mills theory was reduced to that of a nearest

neighbors integrable Hamiltonian with SO(6) symmetry. In particular, single trace opera-

tors made out of two complex scalars X and Z were mapped to states in a one dimensional

spin 1/2 ring,

tr (ZZ . . . ZXZ . . . ZXZ . . . ZZ) ←→ | ↑↑ . . . ↑↓↑ . . . ↑↓↑ . . . ↑↑ 〉 (1.1)

Soon after it was understood that integrability persists for the full set of PSU(2, 2|4)
fields [2, 3] and at higher orders in perturbation theory [4] where the Hamiltonian becomes

long ranged with the range being the order in perturbation theory one considers. Later on,

inspired by string theory data [5 – 7], the full PSU(2, 2|4) Bethe equations were proposed [8]

and the solutions to these equations are believed to yield the spectrum of generic length

L operators up to order g2L. At this order the interactions wrap the single trace operator

and invalidate the use of the Bethe ansatz formalism. To achieve such remarkable point
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where the spectrum of long operators is believed to be known, a crucial step was required.

Namely the idea of looking at operators like (1.1) as a vacuum (the Z fields) on top of which

particles (in this example the X fields) propagate [9]. In this language the relevant object

becomes the S-matrix scattering these particles, also known as magnons. This S-matrix is

SU(2|2)2 extended symmetric [10, 11] and it turns out that symmetry alone almost fixes

(up to an overall function) the
(

44
)2

entries of this matrix [11 – 13]. The unfixed overall

scalar factor has also been conjectured in [14, 15]. Knowing the S-matrix of the theory it is

then possible to write down the Bethe equations quantizing their momenta and, knowing

the respective dispersion relation, to compute their energy. For example, states made out

of two magnons will be given by

∑

n1≪n2

(

eip1n1+ip2n2 + S(p1, p2)e
ip1n2+ip2n1

)

|n1, n2〉+ . . . . . . (1.2)

where |n1, n2〉 represents the state with X fields in the n1’th and n2’th positions in a sea of

L− 2 Z fields. The dots correspond to a non-trivial part of the eigenstate in the boundary

of the asymptotic region when n1 is not very far from n2 and the magnons are strongly

interacting. The momenta are then quantized via the Bethe equations

eip1L = S(p1, p2) , e
ip2L = S(p2, p1)

which physically simply mean that the phase acquired by each magnon when going around

the ring equals the free propagation phase pL plus the phase shift due to scattering with

the other magnons. The spectrum is then given by the sum of energies of the individual

magnons as ∆ − L + 2 = ǫ∞(p1) + ǫ∞(p2) + O(g2L) where the infinite volume dispersion

relation, also fixed by symmetry [11, 16, 13], is given by

ǫ∞(p) =

√

1 + 16g2 sin2 p

2
.

The simplest possible 2 magnon state is the well known Konishi operator

|K〉 = | ↓↑↓↑ 〉 − | ↓↓↑↑ 〉 (1.3)

whose dimension can be computed from the known Bethe ansatz equations [4, 8] up to

order g2L = g8,

∆K = 4 + 12g2 − 48g4 + 336g6 +O(g8) .

At order g8 wrapping interactions appear and the techniques at hand do not suffice to tackle

this computation. Still there are already two possible results in the literature [18, 19] (see

also [20]) where the g8 coefficient was computed by direct evaluation of field theory Feynman

diagrams. In figure 1 we plot the several computations, conjectures and speculative guesses,

for the Konishi anomalous dimension up to four loops.

Optimistically one might expect to find some extra integrable structure in N = 4

SYM which would allow one to treat the gauge invariant states beyond the perturbative

asymptotic Bethe ansatz regime. A particularly appealing possibility would be that some

extra hidden local degrees of freedom exist and the long range interactions we perceive
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Figure 1: Results and conjectures for the scaling dimension ∆(g) = 4+12g2−48g4+336g6−ag8, of

the Konishi operator up to four loops, when wrapping interactions first appear. The lines r1 and r2
correspond to the two recent (disagreeing) computations in [18, 19] for which a = 2607 + 28ζ(3) +

140ζ(5) and −2584 + 384ζ(3) − 1440ζ(5) respectively. The first one was done using superspace

techniques whereas the latter used component formalism making the comparison between these two

laborious computations far from easy. These computations differ from all previous conjectures by

the presence of ζ(5). c1 is the most recent conjecture [21], which is based on some transcendentality

observations and pomeron considerations and predicts a = −5307/2+ 564ζ(3). Conjectures c2 and

c3 appear in [14]. The former corresponds to a = 5640 + 288ζ(3) and would be the value of the

anomalous dimension of the Konishi operator if we were to believe the Bethe ansatz equation beyond

their natural limit of validity and is therefore a very unlikely proposal [21]. c3 is the anomalous

dimension whose transcendental part is that given by the BAE while the rational part is that

predicted by the Hubbard model and has therefore a = 5088 + 288ζ(3). Finally c4 with a = 5088

would be the result predicted by the Hubbard model [23] which we now know only reproduces the

good BAE up to 3 loops.

would rather be the effect of integrating out these fundamental degrees of freedom. This

scenario finds compelling evidence at strong coupling in [24 – 27], at weak coupling in [23]

and for general coupling in [28].

In [24 – 27] quantum sigma models describing the Sn subsector of AdS5×S5 type IIB su-

perstring were seen to reproduce the long range conjectured AFS string Bethe equations [7]

at strong coupling when the rapidities (θ’s) of the relativistic particles were integrated out

thus leaving an effective Hamiltonian for the isospin degrees of freedom.

In [23] the BDS equations [4], which are known to describe the SU(2) sector of the

supersymmetric gauge theory spectrum up to three loops, were shown to be equivalent to

the Hubbard model at half filling where again integrating out the momenta (q’s) of the

electrons yields an effective long range Hamiltonian with SU(2) symmetry for the spins of

the electrons.

In the Hubbard model the effective magnons appearing in (1.2) can be understood

as bound states of empty sites (o) and doubly occupied sites (l). As we will describe
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below, if, in the spirit of [29 – 33], we want to diagrammatically compute the finite size

corrections to the effective magnon theory coming from the Hubbard model using the

Luscher approach [34, 35], then we need to take into account the fact that the magnon

is a bound state of two fundamental particles rather than a fundamental excitation itself.

For example, as discussed in section 2.2 the leading finite size corrections to the magnon

dispersion relation can be reproduced for any value of the coupling g from the expression

δǫ(p) =
∑

σ=o,l

(

1

2
Resq e

iL(q−φσ)
(

ε′(q)− ǫ′∞(p)
)

S
lo,σ
lo,σ (p, q) + c.c.

)

(1.4)

where, in order to reproduce the correct result, we must use the scattering matrix between

a magnon bound state lo and its fundamental constituents o and l.
Curiously, Janik and Lukowski [30] computed the leading finite size correction to the

Hubbard magnon energy at large g = −t/U , using instead the magnon-magnon scattering

matrix and still got a sensible result (correct up to a factor of 2 — see equation (71) in [30]).

Physically this makes sense because at strong coupling g — which from the Hubbard point

of view corresponds to weak interaction strength U compared to the electron hopping

kinetic energy t — the magnons are a weakly bound pair of o and l and when we scatter

the magnon against another magnon we are effectively scattering it against two fundamental

particles! However, as the coupling decreases, the magnon-magnon Luscher formula with

BDS magnon-magnon S-matrix will no longer provide the correct Hubbard result.1 As

explained in section 2.2 the two results will agree to leading order — when the correction

is of order 1/g — and start disagreeing at next to subleading order — at order 1/g3. Could

we be in a similar situation in N = 4 SYM? There, the finite size corrections [36 – 38] to

the Giant Magnon [39] were reproduced at leading order [30, 31] and at next to leading

order [32, 33] but no two loop computation is available. Bearing in mind what happens in

the Hubbard model it is not completely inconceivable that at this loop order the Luscher

results based on the lightcone S-matrix [11, 13] start failing. On the other hand from the

string worldsheet point of view this scenario would certainly be intriguing.

In the opposite regime, at weak coupling g, expression (1.4) gives precisely the correct

result whereas the use of the magnon-magnon BDS S-matrix is completely inappropriate

because in this regime the elementary particles that make the magnon are highly bound.

If this qualitative structure persists in the full N = 4 theory then it explains why a

naive computation of the Luscher terms at weak coupling seems to never yield any sort of

transcendental numbers such as ζ(3) or ζ(5) which typically appear in the computations

of [18, 19]. The reason would be that in order to probe the weak coupling limit of the

theory the knowledge of the magnon constituents would be essential.2

1Let us also remark that considering also the contribution from the S-matrix between magnon and bound

state of magnons (which exist in the BDS theory) in the Luscher formalism does not cure this problem.

At most, these contributions can reproduce the higher winding number diagrams of the fundamental con-

stituents o and l only in the strong coupling regime g ≫ 1. The reason is again that in this regime a bound

state of b magnons is almost like 2b free fundamental particles.
2On the other hand, if the magnons in the light-cone gauged string theory can be thought of as fun-

damental particles — contrary to what happens in the Hubbard model — then a priori we should indeed
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In particular it seems clear that a thermodynamic Bethe ansatz (TBA) approach to the

BDS equations would not recover the Hubbard finite size corrections (because in particular

the TBA approach always reduces to the Luscher formulae at large radius and as we

explained those only work when we take into account the scattering of the magnons with

the fundamental Hubbard electrons). In the context of the full N = 4, the TBA program

is being carried out in [40, 41] still with inconclusive results.

Still in the context of the Hubbard model we analyzed in sections 2.3.1 and 2.3.2 how

wrapping interactions manifest themselves for many particle states. In the N = 4 context

this is an unavoidable question if we want to understand the full anomalous dimensions of

small operators such as the Konishi operator (1.3). There are two different kind of effects

one needs to take into account to study wrapping corrections to many particle states. On

the one hand the energy of the state as a function of the magnon momenta changes when

the theory is put in finite volume and this leads to a Luscher type correction which for the

Hubbard magnons reads

δELuscher =
1

2

M
∑

n=1

∑

σ=o,l

∫

Cn

dq

2πi

(

ε′(q)− ǫ′∞(pn)
)

ei(q−φo)L
M
∏

m=1

S
lo,σ
lo,σ (pm, q) + c.c. ,

generalizing (1.4). Led by the striking simplicity of this expression we conjecture a gen-

eralization of the Luscher formula for many particle states in integrable two dimensional

models in (2.38).

The second effect we need to take into account is the fact that due to the wrapping

interactions the quantization conditions — that is the Bethe ansatz equations — for the

magnon momenta receive corrections and thus the momenta are slightly shifted when wrap-

ping interactions are taken into account. For example, BDS equations [4] can be dressed

to

(

x+
n

x−n

)L

=
∏

m6=n

un − um + i

un − um − i
eiφnm

in such a way that the leading wrapping interactions are taken into account. Here φnm is

a wrapping dressing kernel described in section 2.3.1.

As explained in section 2.3.3, a particularly curious feature of the computations of the

weak coupling finite size corrections is that the leading wrapping correction, of order g2L,

to a state whose magnons’ momenta are pj ≃ p(0)
j + g2p

(1)
j + · · ·+ g2Lp

(L)
j only depends on

the leading values p
(0)
j . This is natural from the point of view of the Luscher computations

which are basically a smart way to organize the two dimensional perturbative expansion

using the two dimensional S-matrix. In this formalism the exponentials which appear in

the several integrands are automatically of order g2L and thus the rest of the integrand,

including the S-matrix and the dispersion relations, can be treated at g0 order. In particular

sum over all these infinite number of bound states and of course infinite sums can eventually lead to tran-

scendental numbers. This seems the only way out to find the good transcendental Konishi anomalous

dimension from a weak coupling computation based on the Luscher formulae. We acknowledge N. Gromov,

V. Kazakov and K. Zarembo for discussions on these issues.
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we can easily compute the wrapping correction to any many magnon BDS state without

performing any iteration of the BDS equations up to order g2L. In N = 4, this should

be related to the fact that to compute the wrapping corrections to the Konishi operator

we isolate the appropriate wrapping diagrams and only keep some information about the

lower order graphs [17 – 19]. If the four dimensional wrapping Feynman diagrams in [17 – 20]

could be re-written in a two dimensional language this could be the key to understanding

the structure of an hypothetical hidden level of fundamental particles.

In section 3 we consider a completely different type of (toy) model where wrapping

interactions are under control. Namely we study long ranged Hamiltonians coming from a

transfer matrix algebraic construction à la Leningrad school. In the algebraic Bethe ansatz

formalism the fundamental object is the transfer matrix, which is a trace of product of

R-matrices,

T (u) = trauxRL(u)⊗ · · · ⊗R1(u) , (1.5)

where the R-matrices are (simple) matrices obeying the Yang-Baxter relation and acting

on the product of an auxiliary space (common for all R-matrices in this expression) and

a physical space hn. The full Hilbert space of a L-site spin chain is given by the tensor

product

H = h1 ⊗ · · · ⊗ hL . (1.6)

The transfer matrix is then an operator acting on the full Hilbert space (and by definition

scalar w.r.t. the auxiliary space). The algebraic Bethe ansatz program yields us the spec-

trum of the transfer matrix T (u). The diagonalization of this object is of great importance

because, as we review in section 3, by taking n derivatives of the logarithm of the transfer

matrix T at u = 0 we can generate integrable Hamiltonians of range n. In particular if we

take more than L derivatives of this object we will start generating Hamiltonians which are

long ranged, contain wrapping interactions and still, by construction, are integrable and

diagonalized through a set of Bethe equations. For example if we consider

Ĥ =
1

4i

∞
∑

n=1

an
g2n

n!

dn

dλn
log T̂ (λ)

∣

∣

∣

∣

∣

λ=0

+ h.c. (1.7)

then we will have an Hamiltonian which at order g2n is of range n and whose spectrum is

given by a sum of individual dispersion relations plus a wrapping correction which starts

precisely at order g2L,

Ĥ =
M
∑

j=1

ǫ(pj) + Ewrapping(p1, . . . , pM )

This behavior is probably completely generic and we considered Hamiltonians of the

form (1.7) with SU(2), SU(N) and SL(2) symmetry.

In the SL(2) case we found the following curious behavior: suppose we consider a

Hamiltonian of type (1.7) with an some algebraic numbers. Then the dispersion relation

truncated at a given order g2n is a rational function of these algebraic numbers and of the

Bethe roots uj = 1
2 cot

pj

2 , which are quantized via a set of polynomial equations. Thus

– 6 –
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L u1,2 ǫ(p1) + ǫ(p2) Ewrapping(p1, p2)

3
√

3
5 ±

√
7

10
11g2

8 + 13
√

3g4

32 − 5g6

6
1
32

(

−26 + 3π2 − 4ζ(3)
)

g6

4 1
3 ±

√
7

6
5g2

4 −
g4

8 −
19g6

24 + 3g8

2

(

41
32 − 5π2

48 − π4

360

)

g8

6 ±1
2 +

√
2

2 g2 + g4
√

2
− g6

3 −
√

2g8 − 4g10

5 + 5
√

2g12

3
−1
2
√

2
(7− 4ζ(3)− 2ζ(5)) g12

Table 1: Energies of some two magnon states of a spin chain of length L and long range SL(2)

Hamiltonian given by equation (1.7) with an = 1. The total energy has contributions from the

infinite volume dispersion relation ǫ(p) and from wrapping effects.

the contribution to the spectrum of the
∑M

j=1 ǫ(pj) term will be given by some algebraic

quantity. On the other hand, precisely at order g2L the wrapping corrections enter the

game and those are given by an infinite sum (3.17) of algebraic functions of the Bethe

roots uj . Typically they will give rise to transcendental contributions!

As an example, in table 1 we listed a couple of energies of some two magnon states

up to order g2L and for the simplest choice of SL(2) Hamiltonian with an = 1. It would

be very interesting to explore this connection between transfer matrices of non-compact

groups and transcendentality in the context of N = 4 supersymmetric Yang-Mills theory.

Perhaps this could provide us with important hints about the origin of the dressing factor

which is populated by transcendental numbers.

This paper is organized as follows: After introducing the Hubbard model in section 2

and reviewing the magnon description in section 2.1 we re-derive the exact finite volume

dispersion relation by means of Feynman diagrams in section 2.1.1. In section 2.2 we

explain how the leading finite size corrections can be understood from a Luscher type

approach. In section 2.3 we study wrapping effects for general many particle states. In

particular we review how the BDS equations follow from the Lieb-Wu equations, explain

how they can be upgraded to include the leading wrapping corrections (section 2.3.1) and

analyze the analogue of the Luscher formulas for many magnon states (section 2.3.2).

Section 3 is devoted to the study of integrable long ranged Hamiltonians derived from

an algebraic Bethe ansatz formalism and in section 3.1 we explore some generalizations

of this construction and present a curious non-compact long ranged Hamiltonian where

transcendentality and wrapping are intimately related.

2. The Hubbard model

The one dimensional Hubbard model describes spin 1/2 electrons moving in a periodic

lattice with L sites. The electrons can hop between neighboring sites and there is a repulsive

(or attractive depending on the sign) potential when two electrons (with opposite spin)

occupy the same lattice site. Obviously, due to Pauli exclusion principle no two equal

spin electrons can ever occupy the same position. At half filling, when the number of

electrons equals the number of sites, each electron will tend to occupy a site in the lattice

due to the repulsive potential. We can then study an effective Hamiltonian for the spins

alone [42]. It will be a long ranged Hamiltonian where the interactions correspond to virtual

– 7 –
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processes where electrons hop there and back eventually changing spin in the process.

In [23] this effective Hamiltonian was identified with the long range Hamiltonian of N = 4

supersymmetric Yang-Mills theory. This identification is correct up to three loops but fails

beyond that. Still, this is an instructive toy model since wrapping interactions, due to

electrons making loops around the ring, are perfectly under control. In this section we will

study them, give them a diagrammatic description and understand how they fit into the

usual field theoretical Luscher treatment of finite size corrections. We will also understand

how to modify the effective Bethe equations for the magnons of the effective spin theory

so that they reproduce the (leading) wrapping effects.

A quite useful alternative description of the relevant degrees of freedom in the Hubbard

model is obtained by performing a so called Shiba duality. It amounts to thinking of the

Hilbert space as that where N −M vacancies o and M double occupancies l move in a

ferromagnetic vacuum with L up spins.3 In this description the Hamiltonian reads

H = −t
L
∑

i=1

∑

σ=o,l

(

eiφσa†i,σai+1,σ + h.c.
)

− U
L
∑

i=1

a†i,oai,oa
†
i,lai,l (2.1)

where, following [23], we have introduced some extra twists φσ in the Hamiltonian which

can be thought of as a sort of magnetic flux inducing additional phases in the electron wave

function as it moves around the chain. As explained in [22, 23] and reviewed below these

twists can be used to delay the wrapping corrections to the effective spin theory.

The complete spectrum of this Hamiltonian can be obtained as

E =

N
∑

n=1

ε(qn) , ε(q) ≡ −2t cos(q) (2.2)

where the momenta are quantized through the solution of the Lieb-Wu [43] equations,

ei(qn−φo)L =

M
∏

j=1

uj − 2g sin(qn)− i/2
uj − 2g sin(qn) + i/2

, n = 1, . . . , N , (2.3)

ei(φo−φl)L
N
∏

n=1

uj − 2g sin(qn)− i/2
uj − 2g sin(qn) + i/2

=
M
∏

k 6=j

uj − uk − i
uj − uk + i

, j = 1, . . . ,M , . (2.4)

where

g = − t

U
.

In section 2.3 we will review [23] how, eliminating the electron momenta qn from

these (twisted) Lieb-Wu equations, we obtain an effective set of (twisted) BAE for the

spin degrees of freedom u which are precisely the (twisted) BDS equations [4]. In that

section we will analyze wrapping corrections in full generality. We will see for example,

3The number of vacancies o and double occupancies l is related to the number of up and down spins as

Nl = N↓, L − No = N↑.

– 8 –
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that perturbatively in g the effective (twisted) Bethe ansatz equations are valid up to order

g2L for the choice of twists [23]

φo − φl −
π

L
= 0 mod

2π

L
(2.5)

and the g2L correction to any perturbative state will be given solely in terms of the position

of the Bethe roots uj to leading (g0) order only. This is probably a simplifying feature

of the weak coupling finite size corrections which is likely to be present in the N = 4

supersymmetric spin chain.

We will also study the generic case where (2.5) does not hold since it will provide us

with a nice toy model to understand Luscher type corrections for many particle states.

In the following two sections we will consider a much simpler setup which however

captures most of the relevant physical information. Namely we will consider the very

simple configuration with a single vacancy o and a single double occupancy l, that is

N = 2 and M = 1.

2.1 The magnon

A magnon in the Heisenberg XXX spin-1
2 chain,

Hxxx =
1

4

∑

n

(1− ~σn · ~σn+1) (2.6)

is the lowest lying excitation above the ferromagnetic ground state. It is a plane wave state

∑

n

eipnσ−n | ↑ . . . ↑〉

of one down spin in a chain of up spins, with excitation energy

ǫ(p) = 1− cos p . (2.7)

In the Hubbard model such plane wave is not an eigenstate of the Hamiltonian but there is

a close analogue of this state when the empty site excitation o and the double occupancy

l form a bound state (note that a o and a l in the same site is precisely the same as a spin

down). More precisely, as reviewed in appendix A, we can consider the following half-filling

state

|Ψ〉 =
∑

n,n′

ψ(n, n′)
(

a†n,la
†
n′,o

)

| ↑ . . . ↑〉 .

with ψ(n, n′) being a superposition of plane waves with momenta q and q′. By acting

with the Hamiltonian on this state we can see that there exist bound state solutions with4

q, q′ = p
2 ± iβ where p is the bound state momentum while β dictates the exponential

4Throughout this paper we always use this definition of p which seems the most natural one from the

Hubbard point of view. To make contact with the standard notations in the AdS/CFT literature we should

use phere = pusual + π.
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damping of the wave function away from n = n′. The energy of such states, which we also

call magnons, equals

ǫ(p) = −4t cos
p

2
cosh β . (2.8)

In infinite volume we find β = β∞(p) where

4g cos
p

2
sinhβ∞(p) = −1 (2.9)

so that ǫ(p) = ǫ∞(p) with

ǫ∞(p) = −
√

U2 + 16t2 cos2
p

2
= −U

(

1 + 4g2(cos p+ 1) + . . .
)

(2.10)

which at weak coupling g has the same − cos p dependence as (2.7). This is expected from

the known result that perturbatively in small g = −t/U the Hubbard model at half filling

is a long-ranged Hamiltonian whose leading term is the Heisenberg spin chain.

The magnon state can also be described by the triplet (q, q∗, u) satisfying the Lieb-Wu

equations

ei(q−φo)L =
u− 2g sin(q)− i/2
u− 2g sin(q) + i/2

, ei(q
∗−φo)L =

u− 2g sin(q∗)− i/2
u− 2g sin(q∗) + i/2

,

ei(φl−φo)Lu− 2g sin(q)− i/2
u− 2g sin(q) + i/2

u− 2g sin(q∗)− i/2
u− 2g sin(q∗) + i/2

= 1 ,

In infinite volume, the l.h.s of the first two equations is 0 and ∞ for a bound state with

complex momentum q = p
2 + iβ. This fixes

u = 2g sin q +
i

2
. (2.11)

The reality of u implies

u = 2g sin
p

2
cosh β∞(p) ≡ u∞(p) (2.12)

and the condition (2.9) which gives the dispersion relation (2.10).

When the state is put in finite volume, equation (2.8) is still valid but the expres-

sion (2.9) for β(p) gets modified to

4g cos
p

2
sinhβ = − sinhβL

cosh βL− cos L
2 (p− 2φo)

(2.13)

In appendix A we derive this equation from the direct study of the magnon wave function

in finite volume. Naturally, the same result can also be obtained from the Lieb-Wu equa-

tions (2.4). Indeed these Bethe equations are exact for any L since the interactions of the

elementary particles are ultra local. The leading finite size correction to the magnon energy

is then exponentially suppressed in the ratio of the system size L by the the physical size

1/β∞ of the bound state,

ǫ(p)− ǫ∞(p) = Ue−β∞(p)L 2 tanhβ∞(p) cos
L

2
(p− 2φo) (2.14)
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(ω, q)

(ω, q)

= −iU

=
i

ω−ε(q)+iǫ

=
i

ω−ε(q)+iǫ

Figure 2: Feynman rules for diagrammatic computations in the Hubbard model. Each elementary

particle (o and l) has a non-relativistic free propagator (solid and dashed lines) and there is only a

quartic interaction vertex. Loops carry an extra minus sign as the elementary particles are fermions.

For the particular choice of twists (2.5), such that ei(φo−φl)L = −1, this leading correction

vanishes, and instead we have

ǫ(p)− ǫ∞(p) = Ue−2β∞(p)L 2 tanhβ∞(p) (2.15)

In the next section we will recover these known results from a diagrammatic point of

view. This will turn out to be very useful to understand how to recover the finite size correc-

tions from the effective theory point of view, that is, from the BDS language. In particular

we will understand that if we were given solely the BDS Bethe equations we would not

be able to recover the finite size corrections using a Luscher type approach [34, 35] except

at strong coupling. Instead, the knowledge of the magnon constituents when computing

the virtual processes wrapping the space-time cylinder will turn out to be essential. The

diagrammatic language seems therefore promising to try to learn some lessons about what

to expect for the N = 4 SYM chain if this chain most fundamental description comprises

extra degrees of freedom [23 – 28].

2.1.1 Diagrammatically

In this section we shall explore the field theoretic description of the Hubbard model defined

by the Hamiltonian (2.1). This will allow us to use the powerful diagrammatic techniques

of field theory to obtain the finite size effects from loop diagrams with topological winding

around the compact direction. We start by writing the action of the theory

S =

∫

dt
∑

n

(

Lo + Ll + Lint

)

where the free part is given by

Lσ =
i

2

(

a∗n,σ∂tan,σ − an,σ∂ta
∗
n,σ

)

+ t
(

eiφσa∗n,σan+1,σ + e−iφσa∗n,σan−1,σ

)

and the interaction by

Lint = Ua∗n,oan,oa
∗
n,lan,l

The elementary excitations o and l have a non-relativistic propagator

〈

T an,σ(t)a∗n′,σ(t′)
〉

=

∫

dω

2π

∫ π

−π

dq

2π
e−iω(t−t′)+i(q−φσ)(n−n′) i

ω − ε(q) + iǫ

– 11 –
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G0

(Ω, p)
G0 G0

(Ω, p)

−iU −iU −iU

Figure 3: Feynman diagrams for the two point function of the composite operator χ.

where

ε(q) = −2t cos(q) .

The interaction term in the action gives rise to a quartic coupling with coupling constant U .

The Feynman rules are summarized in figure 2. In a non-relativistic theory the number of

particles is conserved and this greatly simplifies the field theoretic perturbative expansion

of the theory [44 – 46]. Diagrammatically, this fact stems from the retarded nature of the

propagators which gives them an orientation.

In order to find the two particle spectrum we consider the two point function

〈

T χn(t)χn′(t′)
〉

=

∫

dΩ

2π

∫ π

−π

dp

2π
e−iΩ(t−t′)+ip(n−n′)G (Ω, p)

of the composite operator

χn(t) = an,o(t)an,l(t) + a∗n,o(t)a
∗
n,l(t)

In particular, to find out possible bound states (magnons) we should look for poles of

G(Ω, p) thus obtaining the dispersion relation Ω(p). Notice that there is a big arbitrariness

in the choice of the composite operator χ. The only requirement is that the state it creates

has some overlap with the magnon wave function.

The propagator G (Ω, p) can be computed diagrammatically. It is given by the sum of

all diagrams describing the two elementary particles moving freely and interacting k times

as shown in figure 3. More precisely, it is given by

G (Ω, p) =

∞
∑

k=0

[G0 (Ω, p)]k+1 (−iU)k =
i

iG−1
0 (Ω, p)− U

(2.16)

where the free propagator

G0 (Ω, p) = −
∫

dω

2π

∫ π

−π

dq

2π

i

ω − ε(q) + iǫ

i

Ω− ω − ε(p − q) + iǫ

can be computed by residues,

G0 (Ω, p) =
i

√

Ω2 − 16t2 cos2 p
2

.

Thus, the full propagator reads

G (Ω, p) =
i

√

Ω2 − 16t2 cos2 p
2 − U

– 12 –
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and the magnon bound state corresponds to the pole at

Ω = −U
√

1 + 16g2 cos2
p

2

which is precisely the infinite volume result (2.10).

With periodic boundary conditions of size L the free propagator is changed. The

natural way to account for this effect is to sum over all possible windings of the loops in

figure 3 around the compact circle. The winding numbers are a topological property of the

Feynman graph that can be assigned to any of the propagators forming each loop. We shall

compute the graph assigning the winding number m always to the particle o. Furthermore,

equation (2.16) remains valid provided

G0 (Ω, p) = −
∞
∑

m=−∞

∫

dω

2π

∫ π

−π

dq

2π

i

ω − ε(q) + iǫ

i

Ω− ω − ε(p− q) + iǫ
eim(q−φo)L

=
iFL (Ω, p)

√

Ω2 − 16t2 cos2 p
2

where, if we parametrize Ω as

Ω = −4t cos
p

2
cosh β, (2.17)

we get

FL (Ω, p) = 1 +

∞
∑

m=1

e−mLβ cosmL
(p

2
− φo

)

=
sinh(βL)

cosh(βL)− cosL
(p

2 − φo

)

The full propagator then becomes

G (Ω, p) =
iFL (Ω, p)

√

Ω2 − 16t2 cos2 p
2 − UFL (Ω, p)

and the magnon pole sits at (2.17) with β determined from the equation

4t cos
p

2
sinhβ = UFL (Ω, p)

which is precisely (2.13).

2.2 Luscher in Hubbard

Luscher developed a general formalism [34, 35, 30] to determine the leading finite size

corrections in quantum field theory. In particular, he studied the change in the dispersion

relation of one particle when one imposes periodic boundary conditions. Remarkably,

he found that the leading correction to the energy ǫ(p) of a particle with momentum p

was completely fixed by the particles infinite volume dispersions relations and S-matrix.

The idea is that the on-shell dispersion relation is defined by the pole of the propagator.

Following the standard notation of relativistic field theory we can write

iG−1 (Ω, p) = −Ω2 + ǫ2∞(p) + Σ (Ω, p) = 0 (2.18)
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where

Σ (Ω, p) = Σ∞ (Ω, p) + δΣ (Ω, p)

is the particle’s self-energy, whose infinite volume part vanishes with zero derivative on the

mass-shell Ω = ǫ∞(p). From (2.18) with Ω = ǫ∞(p) + δǫ(p) we obtain

δǫ(p) =
δΣ

2ǫ∞
+

(

δΣ

2ǫ∞

)(

∂0δΣ

2ǫ∞

)

+

(

1

2
∂2

0Σ− 1

)

1

2ǫ∞

(

δΣ

2ǫ∞

)2

+ . . . (2.19)

with all the quantities computed at the infinite volume mass-shell Ω = ǫ∞(p). The self-

energy correction δΣ can then be related to the S-matrix. This is achieved by evaluating

the self-energy diagrams with winding around the compact direction by deforming the in-

tegration over the loop momenta to pick the on-shell pole of the wound internal propagator

and obtain an integral of the forward scattering S-matrix [34, 35, 30]. More precisely, the

leading finite size correction to ǫa(p) is given by5

1

2

∫

C

dq

2πi
eiLq

∑

b

(−1)Fb

(

ǫb ′∞(q)− ǫa ′
∞(p)

)(

1− Sa b
a b(p, q)

)

+ c.c.

where Sa b
a b(p, q) is the S-matrix for forward scattering of particle a with particle b, Fb = ±1

encodes the bosonic/fermionic nature of particle b and we consider only the contribution

from diagrams with winding number ±1. For usual relativistic theories the contour C is

given by an integral over the possible S-matrix poles plus an integral over the real axis.

The latter describes a quantum loop and is absent in our case where the underlying theory

is non-relativistic [44 – 46]. The former can be simply computed by residues and is denoted

by µ-term.

Let us now apply this general formalism to the Hubbard model and find the leading

finite size correction to the magnon dispersion relation. As we saw in the previous sections

the magnon is a bound state with a finite size 1/β∞. Therefore, its energy in a finite system

has a leading correction of order e−β∞L, except for a particular choice of twists where this

correction can be delayed to order e−2β∞L. The diagram leading to the first wrapping

correction corresponds to the splitting of the magnon into its fundamental constituents

each one going around the space-time cylinder in opposite directions and meeting on the

other side of the cylinder as depicted in figure 4. The Luscher µ-term then reads

δǫ(p) =
∑

σ=o,l

(

1

2
Resq e

iL(q−φσ)
(

ε′(q)− ǫ′∞(p)
)

S
lo,σ
lo,σ (p, q) + c.c.

)

(2.20)

5In [34, 35] this formula was derived for relativistic theories and p = 0. This amounts to computing

the corrections to the particle’s mass. In the process of derivation the propagator is wound around the

spacial circle originating a factor of cos(qL) multiplying the infinite volume propagator. Since the spacial

momentum p vanished the problem was isotropic with respect to the spacial directions and this factor could

be simply replaced by 2eiqL. In the case p 6= 0 we must treat each exponential separately which amounts

to summing the contributions from the virtual particles going parallel and anti-parallel to the physical

particle. In most cases, including those considered in this paper, these symmetrizations will simply lead to

computing the real part of the result obtained keeping one exponential.
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Figure 4: The leading finite size correction to the magnon energy is given by the Feynman diagram

where its two elementary constituents split and merge after winding the spacetime cylinder once.

After cutting the wound loop, putting one elementary particle on shell, this diagram gives rise to

the Luscher µ-term.

where q and ε(q) are the momentum and energy of the elementary particle o going around

the loop in figure 4, ǫ∞(p) is the infinite volume dispersion relation of the magnon and the

residue is taken at the pole of the S-matrix. The S-matrix between magnon and elementary

particle (o or l) can be read of from the Bethe equations (2.4)

S
lo,o
lo,o(p, q) = S

lo,l
lo,l(p, q) =

u∞(p)− 2g sin(q)− i/2
u∞(p)− 2g sin(q) + i/2

with

u∞(p) = 2g sin
p

2
cosh β∞(p) .

The pole condition

2g sin(q) = u∞(p) + i/2

has the simple solution

q =
p

2
+ iβ∞(p) .

Putting everything together we recover the result (2.14). For the choice of twists (2.5) this

leading term vanishes and one needs to consider the contribution coming from diagrams
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with winding number ±2,6

δǫ(p) = Resq e
i2L(q−φo)

(

ε′(q)− ǫ′∞(p)
)

S
lo,o
lo,o(p, q) + c.c.

which gives (2.15).

2.2.1 Luscher with magnon-magnon S-matrix

In the previous sections we saw, by many means including a Luscher type computation,

that the leading finite size correction to the magnon dispersion relation is given by [23]

δǫ(p) = Ue−2β∞L 2 tanhβ∞

when the Hubbard twists are chosen as in (2.5). This expression is valid for all values of

the coupling g. In particular, at strong coupling we find [37]

δǫ(p) =

(

− U
2g

sec
p

2
+

U

64g3
sec3 p

2
+ . . .

)

exp− L
2g

sec
p

2

(

1− 1

96g
sec2 p

2
+ . . .

)

. (2.21)

In [30] — in the process of computing the leading µ-term prefactor for the AdS5×S5 giant

magnon — Janik and Lukowski also determined what the contribution would be for the

BDS scenario. They found

δǫ(p) = −U
g

sec
p

2
e−

L
2g

sec p

2 + . . .

where we adapted their results to our normalizations. This result was obtained applying

Luscher formula with the magnon-magnon S-matrix and thus describes a different physical

process from the point of view of the elementary particles. Surprisingly, the two results

agree up to an overall factor of 2. Physically one can try to justify this result using the

fact that for large g the magnon is a weakly bound state of the elementary particles o and

l. Thus, it is not unreasonable that the effect of a magnon loop around the spacetime

cylinder is almost the same as a loop of the elementary particles with winding number 2.

In any case, the accidental nature of this agreement is confirmed by its limitation to the

strong coupling regime. In appendix C we repeat the computation of [30], expanding the

result further in 1/g,

δǫ(p) = ℜ
(

−U
g

sec
p

2
+
iU

g2
tan

p

2
sec2 p

2
+ . . .

)

exp− L
2g

sec
p

2

(

1− i

2g
tan

p

2
sec

p

2
+ . . .

)

.

(2.22)

So that the result starts differing (apart from the factor of 2) at the next order in 1/g. If

we fix L/g and expand both the prefactor and exponent then we can easily see that the

1/g2 term drops out and the mismatch is delayed to the next to leading order in 1/g, as

6For generic twists, the subleading correction (of order e−2β∞L) to the magnon dispersion relation

depends on all terms in (2.19), including the second derivative of the infinite volume self-energy which is

not a physical on-shell observable. However if δΣ vanishes at order e−β∞L then we only need to compute

the first term, that is, the correction to the self energy due to winding 2.
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mentioned in the introduction. This limit is the one usually considered in the AdS/CFT

context.

The BDS magnon effective theory, reviewed in the next section, contains bound states

of magnons [47] which are simple generalizations of the Bethe strings in the Heisenberg

model. In [31] the Luscher term accounting for the finite size correction to the (dyonic)

Giant magnon [47] dispersion relation was written including the virtual exchange of all

these bound states of magnons. Thus, one might question if the sum of the contributions

of all these bound states will correct the result (2.22) to give the exact result (2.21). This

is not the case. In fact all diagrams present in the theory are those in figure 3 and they

do not, in any sense, describe virtual exchanges of magnons and magnon bound states. At

most, at very large g the loops of b magnons could be mimicking 2b loops of fundamental

particles and thus, the best we can expect from summing all the possible magnons is to

recover the full finite volume result but always for g →∞.

Furthermore, in the weak coupling regime the magnon-magnon computation gives the

right g2L coupling dependence but misses completely the momentum dependence of δǫ.

This result puts in question the validity of direct application of Luscher formulas to

the giant magnon of N = 4 SYM. In particular, if the giant magnon is not an elementary

particle (like the 2 electrons bound state in the Hubbard model) of the worldsheet theory

then its finite volume energy will be sensitive to the elementary excitations of the theory

and can not be recovered just from the magnon-magnon S-matrix in infinite volume. On

the positive side, this makes the wrapping effects a window into the most elementary level

of the theory.

2.3 Magnon effective Bethe ansatz equations and generic wrappings

In this section we will review the results of [23] and see how the Bethe equations for the

effective system of spins at half-filling coincides with the (twisted) BDS equations. We will

then study the wrapping interactions for a general state. In particular we will understand

how to dress the BDS equations in such a way that they include the wrapping interactions.

We will also see that the leading order correction to the energy of a generic M magnon

state can be given a Luscher type diagrammatic interpretation.

At half filling the Bethe ansatz equations (2.4) are given by

ei(qn−φo)L =
M
∏

j=1

uj − 2g sin(qn)− i/2
uj − 2g sin(qn) + i/2

, (2.23)

ei(qn+M−φo)L =

M
∏

j=1

uj − 2g sin(qn+M)− i/2
uj − 2g sin(qn+M) + i/2

, (2.24)

ei(φl−φo)L
M
∏

n=1

uj − 2g sin(qn)− i/2
uj − 2g sin(qn) + i/2

uj − 2g sin(qM+n)− i/2
uj − 2g sin(qM+n) + i/2

=
M
∏

k 6=j

uj − uk − i
uj − uk + i

, (2.25)

where we explicitly split the 2M momenta qn into two equal groups so that all indices

range from 1 to M . A state with M magnons is a state where the 3M Bethe roots organize
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in triplets of Takahashi states

(qn, qn+M , un) , (2.26)

with

qn+M = q∗n ,

while the real u root is given by

un ≃ 2g sin qn +
i

2
= 2g sin q∗n −

i

2
. (2.27)

The last condition is necessary once we allow qn to have a positive imaginary part (and thus

qn+M = q∗n to have a negative imaginary part). In this case, the l.h.s of equations (2.23)

and (2.24), respectively, vanishes and diverges exponentially with the system size L and

condition (2.27) is required to obtain the same behavior for the r.h.s. It is also clear - and

shown in [23] - that if we multiply the equations for each element of the Takahashi triplet

we obtain the twisted BDS equations

ei(pn−φo−φl)L ≃
M
∏

m6=n

un − um + i

un − um − i
, (2.28)

parametrizing the momenta as

qn =
pn

2
+ iβn .

The dispersion relation ǫ(qn) + ǫ(qn+M) as function of p and the relation between p and

the Bethe roots u is to leading order exactly as before, as it follows simply from computing

the real and imaginary part of (2.27), namely βn ≃ β∞(pn) given in (2.9),

un ≃ u∞(pn) ≡ 1

2
tan

pn

2

√

1 + 16g2 cos2
pn

2
, (2.29)

and E ≃∑ ǫ∞(pn) with

ǫ∞(p) ≡ −
√

U2 + 16t2 cos2
p

2
. (2.30)

2.3.1 Corrected BAE

In this section we will study expressions (2.28), (2.29), (2.30) in greater detail. That is

we will understand how these relations get modified once the leading finite size effects are

taken into account. To do so we will study the leading wrapping effects for a generic many

magnon state.

Physically there are two sources of corrections to the energy of a many magnon state.

On the one hand, the energy of the state as a function of the magnon momenta changes

when the state is put in finite volume. This will lead to a Luscher type correction. On

the other hand, the periodicity condition, that is the BAE, are corrected and thus the

quantized momenta are shifted. Diagrammatically this last effect would be due to new

wrapping virtual processes correcting the magnon S-matrix rather than to the usual self

energy virtual graphs present for the Luscher type contribution.
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As for the single magnon case we will see that the bound state structure of the magnon

must be taken into account to reproduce the proper finite volume results.

Needless to say, instead of correcting the effective BDS equations we could simply use

the exact Lieb-Wu nested Bethe equations! The point is that we want to understand how

the corrections to the Bethe equations of effective spin theories look like. This might be

useful if, as discussed in the introduction, the N = 4 SYM long-ranged Hamiltonian stems

from an underlying Hubbard like description.

We want to eliminate the magnon momenta qn from the Lieb-Wu equations thus ob-

taining an effective equation for the magnon rapidities un. As we saw, to leading order we

simply have (2.27) but since we want also to keep track of the leading wrapping corrections

to the effective equations we should instead write qn = pn

2 + iβn and

un = 2g sin qn +
i

2
+ ∆n = 2g sin q∗n −

i

2
+ ∆∗

n (2.31)

where ∆n is a small quantity which can be computed from the equations (2.23) and (2.24)

for the magnon momenta. This is done in appendix B. Since un is real we can compute

both un and βn from the knowledge of the real and imaginary of the small quantity ∆n.

In particular, taking the imaginary part of (2.31), we obtain that δβn ≡ βn − β∞(pn) is

given by

δβn ≃ 2 tanhβ∞(pn)ℑ (∆n) (2.32)

where as before β∞(p) is defined through (2.9). To proceed we introduce the notation

q∞n ≡ pn

2 + iβ∞(pn) and u∞n ≡ 2g sin q∞n − i
2 so that

un = u∞n + 2g i cos q∞n δβn + ∆n +O(e−2βL) , (2.33)

Next, as explained in greater detail in appendix B, we multiply the three Lieb-Wu

Bethe equations for the Takahashi triplet (2.26) and expand using (2.31) and (2.33) to find

ei(pn−φl−φo)L =
∏

m6=n

u∞n − u∞m + i

u∞n − u∞m − i
eiφnm +O(e−2βL) , (2.34)

where the wrapping dressing kernel φnm is given by7

φnm = − ℑ(∆n)

(u∞n − u∞m )2 + 1

(

1

u∞n
tan2 pn

2
+

2

u∞n − u∞m

)

− (n↔ m) (2.35)

The dressed Bethe equations (2.34) can trivially be solved perturbatively provided a

solution p∞n to the original BDS equations is given. In this case u∞n , which was a function

of pn, can be expanded around the value pn = p∞n . The value of the Bethe roots for these

values of momenta are denoted by u∞
n

. We stress again, the u∞
n

are the values of the

Bethe roots obtained via the BDS equations whereas u∞n are functions of a free variable

7If the twists are chosen as in (2.5) the imaginary part of ∆n becomes of order e−2βL and we need to

expand further. In this case we obtain (B.6) in appendix B and (2.33), (2.34) hold to order e−3βL.
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pn. Writing u∞n = u∞
n

+ δun we easily see that the leading order shifts to the Bethe roots

due to the inclusion of the dressing Kernel reduces to the simple linear problem

Lδpn −
∑

m

2 (δum − δun)

(u∞
n
− u∞

m
)2 + 1

=
∑

m6=n

φn,m

with δun =
(

d u∞
n

d pn

)

pn=p∞n
δpn. Having found δpn and δβn we want to compute the shift to

the many particle state energy

δE =
∑

n

−4t cos
pn

2
cosh βn + 4t sin

p∞n
2

cosh β∞(p∞n )

due to the wrapping effects. As mentioned above, this expression is non-zero due to two

completely distinct type of corrections.

On the one hand, as we just saw, the momenta are quantized differently and thus

we will have a contribution due to the displacement of the Bethe roots when wrapping

interactions are taken into account. For many particles states like the ones we are now

considering these corrections must be taken into account.

On the other hand the functional dependence of the energy on the momenta {pn}
changes when we put the system in finite volume. More precisely βn will be given by the

infinite value expression β∞(pn) plus the correction δβn which will in general depend on

all the magnon momenta in an entangled way. This contribution is precisely the analogue

of the Luscher corrections described in the previous sections for the single magnon case.

We will discuss these corrections in greater detail in the next subsection.

Putting these two corrections together we immediately get

δE =
∑

n

(

−Uδβn +
dǫ∞(pn)

dpn
δpn

)

. (2.36)

Roughly speaking we could say that the first term is of Luscher type and accounts for

virtual processes correcting the magnon dispersion relations while the second term stems

from correcting the magnon S-matrix and therefore the BAE. It would be interesting

to provide φnm with a diagrammatic interpretation. Moreover, in the thermodynamical

Bethe ansatz approach to the computation of finite size effects in relativistic integrable

models, renormalized Bethe equations for the positions of extra zeros in the TBA Y -system

appear [48]. If the same structure emerges for the AdS/CFT TBA equations then the form

of the above dressed equations (2.34) might provide some hints about the possible aspect

of such dressed equations.

2.3.2 Meeting (and generalizing) Luscher

In this section we want to analyze the first correction δELuscher = −U∑M
n=1 δβn to the

energy of a M magnon state when put in finite volume and provide it with a simple physical

diagrammatic meaning.8 Using (2.32) and the expression for ∆n in appendix B we find

δELuscher =
U

2

M
∑

n=1

2 tanh β∞(pn) ei(
pn
2

+iβ∞(pn)−φo)L
M
∏

m6=n

u∞
m
− u∞

n
+ i

u∞
m
− u∞

n

+ c.c.

8This section, together with appendix D benefited largely from discussions with K. Zarembo.
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p2p1

q

Figure 5: The many particle state is corrected due to interactions with a virtual particle going

around the spacetime cylinder. For integrable theories the correction to the energy of the state is

expressed in terms of a product of factorized scattering matrices between the virtual particle and

the various physical particles. For non-diagonal scattering this product defines a transfer matrix, a

central object in quantum integrability.

which can be written as

δELuscher =
1

2

M
∑

n=1

∑

σ=o,l

∫

Cn

dq

2πi

(

ε′(q)− ǫ′∞(pn)
)

ei(q−φo)L
M
∏

m=1

S
lo,σ
lo,σ (pm, q) + c.c. (2.37)

where Cn encircles the pole of S
lo,σ
lo,σ (pn, q) at q = pn

2 + iβ∞(pn) in the counter-clockwise

direction. Obviously this expression resembles the single magnon Luscher formula (2.20)

used before and can be thought of as its many particle generalization. Physically it rep-

resents the correction to the state self-energy due to the process where a virtual particle

with momenta q goes around the cylinder scattering with all other physical excitations as

depicted in figure 5.

Due to its strikingly simple form one might try to guess what the many particle Luscher

formula for generic quantum integrable two dimensional field theories with factorized scat-

tering could be. A likely candidate for such expression for a state with M particles with

polarizations a1, . . . , aM and momenta p1, . . . , pM would be

δELuscher = ℜ
{ M
∑

n=1

∑

{b1,...,bM}

∫

dq

2πi

(

ε′bn
(q)− ε′an

(pn)
)

ei(q−φb1)L(−1)Fb1 (2.38)

[

Sa1,b2
a1,b1

(p1, q)S
a1,b3
a2,b2

(p2, q) . . . S
aM ,b1
aM ,bM

(p2, q)− δb2
b1
. . . δb1

bM

]}
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where we sum over the fundamental polarization bj but in principle allow the physical

particle to be bound states in which case some of the indices an will be bound states

indices as in (2.37). In this case, the corresponding S-matrices in this expression should

be the usual fused S-matrices. For fermionic virtual particle we include the standard

−1 factor from the loop and in case magnetic fields are coupled to any of the particles a

corresponding twist is included. Notice that we allow the polarization of the virtual particle

to change as it scatters with each of the physical particles. This is not in contradiction

with (2.37) because due to charge conservation S
lo,σ′

lo,σ =0 if σ 6= σ′. We also notice that,

not surprisingly, the first term in the second line can be written in a very compact form

in terms of the transfer matrix T̂ (q) = str0

(

Ŝ1,0(p1, q) . . . ŜM,0(pM , q)
)

, a central object in

integrable theories. Finally the second term in the last line is irrelevant if we only integrate

over the S-matrices poles but for relativistic theories we expect the forward scattering

amplitude to appear when the momenta is integrated over the real axis.

In the AdS/CFT setup it would be interesting to consider this expression applied to the

computation of the exponential corrections to spinning strings [49 – 51]. In the scaling limit

the transfer matrix becomes the exponential of the algebraic curve quasimomenta [5, 6, 52 –

54] and using the techniques in [27, 32, 55 – 58] one might try to study semi-classical

wrapping corrections around fairly general classical solutions.

Finally, we should stress that expression (2.38) is a conjecture for which we have no

prove but only empirical evidence. It would be interesting to try to directly generalize

Luscher arguments for many particles states in integrable theories in which factorizability

should provide dramatic simplifications.

2.3.3 Perturbative treatment

In this section we will consider the perturbative small g regime. Since

e−β∞ = 2g cos
p

2
+O(g3)

the leading finite size corrections for generic twists will appear at order gL and at order g2L

for twists given by (2.5). For example the single magnon results of section 2.1 are easily

seen to give

ǫ(p)− ǫ∞(p) ≃



















−2U
(

2g cos
p

2

)L
cos

L

2
(p− φo) , for generic twists

−2U
(

2g cos
p

2

)2L
, for twists as in (2.5)

(2.39)

As explained in section 2.3.1, when we want to consider states with more than one magnon

we expect two types of contributions. On the one hand, we have a Luscher type contribution

of the form

δELuscher ≃ −U
M
∑

n=1

δβn (2.40)

due to the fact that the energy of the state, as a function of the magnon momenta, changes

when the state is put in finite volume. On the other hand we obtain extra corrections due
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to the fact that the effective Bethe equation for the magnons are corrected when wrapping

effects are taken into account,

δEBAE ≃
M
∑

n=1

dǫ∞(pn)

dpn
δpn .

However, since perturbatively the derivative of the dispersion relation with respect to p

carries an extra power of g2, (2.40) is sufficient to compute the leading wrapping correction.

Notice that since the exponential factors of e−β∞L start at gL order the prefactors can be

computed using the g0 order positions of the Bethe roots u∞n (which we simply denote by

un in what follows). This is a huge simplification which is probably also present in N = 4

SYM if the most fundamental description of the supersymmetric chain bears a resemblance

with the Hubbard model.

Generic states can be studied by expanding at small g the expression in appendix B. For

concreteness let us focus on 2 magnon states with twists given by (2.5). Moreover we chose

the twists as given in [23] which correspond not only to (2.5) but also to eiφlL = (−1)L+1.

In this case not only the wrapping order is delayed to g2L but also the BDS effective

equations become untwisted. We obtain, to leading g2L order,

δE

U
= 2

(

∆
(0)
1

)2
+ 2

(

∆
(0)
2

)2
+

4∆
(0)
1 ∆

(0)
2

(u1 − u2)2 + 1
+ o(g2L) (2.41)

with

∆
(0)
1,2 = igL

(

i

u1,2 − i/2

)L u1,2 − u2,1 − i
u1,2 − u2,1

.

For Konishi like states with opposite momenta p and −p (and thus u1 = −u2) we get the

remarkably simple expression

δE

U
= 22L+1g2L(cos(p) + 3) csc2 p

2
cos2L p

2
. (2.42)

In particular, we might consider some ”high energy magnons” with p ≃ −π in a long spin

chain to find

δElarge momentum ∼ (p+ π)2L ≪ 1

which is a tiny quantity while for low momentum states with p ≃ 0

δElow momentum ∼ 1

p2
≫ 1 ,

and wrapping corrections are very large. This is physically intuitive as low momentum

states probe larger portions of the space cylinder and thus are more sensitive to wrapping

interactions.

It would be very interesting if the computations of [18, 19] could be generalized to

generic two magnon states with arbitrary L. If this turns out to be feasible then the
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study of the dependence of the anomalous dimensions on the magnon momenta could be

an important window into the structure of wrapping effects in N = 4 SYM.

As mentioned above, to compute (2.41) or (2.42) we only need to know the leading g0

position of the Bethe roots which are simply given by the Heisenberg chain Bethe equations.

If u1 = −u2 = u they become simply

(

u+ i/2

u− i/2

)L

=
u− (−u) + i

u− (−u)− i
so that the only effect of the second magnon is to effectively renormalize L to L − 1.

Therefore the momenta p = 2arctan 2u will be simply given by p = −π + 2πn
L−1 . e.g. for

the Konishi operator p = −π
3 and δE = −2268g8 which is represented by the mismatch

between curves c4 and c2 in figure 1.

Another example which illustrates the huge variance of the prefactor as function of the

magnon momenta is the 2 magnon state for some large chain with, e.g., L = 100. For these

states the wrapping corrections range from the smallest values for the largest momentum

states with n = 49 for which δE ≃ −7.97 × 10−300g200 to the highest value for the lowest

momentum states with n = 1 and corresponding δE = −1.15 × 1064g200.

3. Families of long-ranged integrable hamiltonians

In the previous sections, we explored wrapping effects in the Hubbard model, as a controlled

toy model closely related to N = 4, see discussion in the introduction. In that model the

long range Bethe equations for the magnons are effective equations and the fundamental

degrees of freedom are electrons whose interactions are ultra local. In this section, we will

explore a completely different toy model which also has an analytic solution. In this model,

the fundamental description is given by a long ranged Hamiltonian where, by construction,

wrapping interactions are under control. Contrary to the previous model, it does not seem

to share many features with the known N = 4 spin chain however it is a nice simple model

worth looking at.

The algebraic Bethe ansatz construction is the formalism that diagonalizes transfer ma-

trix operators like (1.5) mentioned in the introduction.9 These transfer matrices commute

with one another for different values of the spectral parameter.10 Thus, if we construct a

spin chain Hamiltonian H from the transfer matrix (usually, by taking derivatives of its

logarithm at a particular point u∗) then, by construction [H,T (u)] = 0 and we immediately

obtain a huge number of conserved charges and hence quantum integrability.

For example, let us consider the standard SU(2) spin chain transfer matrix

T̂ (λ) ≡ tr0





L
∏

j=1

λ+ iP0j

λ+ i



 , (3.1)

9A transfer matrix also appeared in section 2.3.2 although there, the operators being multiplied inside

the trace were S-matrices rather than R-matrices.
10The reason for this is that the operators being multiplied in (1.5) or in (3.1) below obey the Yang-Baxter

triangle relation.
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where P0j is the permutation operator between a physical vector space hj and an auxiliary

space h0, both isomorphic to C
2. The transfer matrix is then an operator acting in the

full Hilbert space given by the tensor product of L copies h1, . . . , hL associated with the L

spin chain sites. The eigenvalues of this SU(2) transfer matrix are given by

T (λ) =

M
∏

j=1

λ− uj − i/2
λ− uj + i/2

+

(

λ

λ+ i

)L M
∏

j=1

λ− uj + 3i/2

λ− uj + i/2
(3.2)

where uj are denoted by Bethe roots. It is clear from the definition (3.1) that the eigenvalues

can not have poles as λ approaches uj−i/2. The cancellation of the corresponding residues

in (3.2) is indeed guaranteed by the Bethe equations

(

uj + i/2

uj − i/2

)L

=

M
∏

k 6=j

uj − uk + i

uj − uk − i
(3.3)

which quantize the Bethe roots uj. Physically, the left hand side of this equation represents

the free propagation eipjL of the magnon j as it goes around the spin chain while the

r.h.s.
∏

k 6=j S(pj, pk) describes the scattering of this magnon with all the other magnons.

Therefore, the Bethe root uj and the momentum pj of the jth magnon are related by

u =
1

2
cot

p

2
. (3.4)

Having diagonalized T̂ we have automatically diagonalized all Hamiltonians obtained from

this transfer matrix. For example, the Heisenberg Hamiltonian (2.6) can be obtained as
1
2i

d
dλ log T̂ (λ)

∣

∣

∣

λ=0
so that the spectrum is simply

E =
1

2i

d

dλ
log T (λ)

∣

∣

∣

∣

λ=0

=
M
∑

j=1

1/2

u2
j + 1/4

=
M
∑

j=1

2 sin2 pj

2
.

By considering more derivatives of log T̂ at λ = 0 we generate other local Hamiltonians

with longer range. To obtain the spectrum of these Hamiltonians we simple act with more

derivatives on the logarithm of the eigenvalue (3.2). In particular, if we take more than L

derivatives, wrapping interactions, where the range of the Hamiltonian is bigger than the

size of the spin chain, will appear. Remarkably, for all such models the Bethe equations

are just (3.3) since they diagonalize the transfer matrix!

A particularly interesting hamiltonian is

Ĥ(g) =
1

4i
log

T̂ (g2)

T̂ (0)
+ h.c. (3.5)

If we think of g2 as being an expansion parameter then we have an infinite range Hamil-

tonian where, at each order g2n in perturbation theory, the interaction range is n. In the

notations of [60] we have

Ĥ(g) =
g2

2

∑

j

Hj,j+1 +
ig4

4

∑

j

[Hj,j+1,Hj+1,j+2] + . . . (3.6)
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where Hj,j+1 = 1−Pj,j+1. The spectrum of this Hamiltonian is then given by (3.5) where

we simply replace the operators T̂ (·) by the corresponding eigenvalues T (·) to get

E =
1

4i

M
∑

j=1

log

(

uj + i
2 − g2

uj − i
2 − g2

uj − i
2

uj + i
2

)

+
1

4i
log



1 +

(

g2

g2 + i

)L M
∏

j=1

uj − 3i
2 − g2

uj + i
2 − g2

uj − i
2 − g2

uj + i
2 − g2



+ c.c. . (3.7)

The first term comes from the first term in (3.2). It gives a contribution to the energy

of the form
∑

ǫ(pj), that is a sum of the dispersion relations of M individual magnons

interacting through (3.3). The dispersion relation, when written in terms of p, yields

ǫ(p) =
1

2i
log

(

1− 2g2e−ip/2 sin p
2

1− 2g2e+ip/2 sin p
2

)

= 2g2 sin2 p

2
+ 2g4 sin p sin2 p

2
+ · · ·+

(

2g2
)n

n
sin

np

2
sinn p

2
+ . . . (3.8)

The second term in (3.7), which comes from the second term in (3.2), is identically zero up

to order g2L, precisely when wrapping interactions appear! Thus, at order g2L the energy

is given by a sum of dispersion relations of the form (3.8) plus this wrapping term, which

entangles all M magnons and is not writable as a sum of individual magnon energies. In

terms of the magnon momentum we have

E =

M
∑

j=1

ǫ(pj) + g2L 1

4i



i−L
M
∏

j=1

(

2e−2ipj − e−ipj
)

− c.c.



 +O(g2L+1) . (3.9)

For example, for 1 and 2 magnons we get respectively

E(p) = ǫ(p) +
g2L

2

(

sin

(

p+
Lπ

2

)

− 2 sin

(

2p+
Lπ

2

))

+O(g2L+2) , (3.10)

and

E(p, k)=ǫ(p) + ǫ(k) + g2L

(

s(p) + s(k)− s(0)

2
− 2s(p+ k)

)

+O(g2L+2) , (3.11)

where s(x) ≡ sin(p + k + Lπ/2 + x). In particular, it is clear that the correction to the

energy of the two magnon state is not of the form δǫ(p)+δǫ(k). This was expected since at

order g2L the interaction range covers the entire chain and the notion of asymptotic region

where one can safely measure the dispersion relation of each magnon is destroyed [9, 59].

When we compare the type of corrections (3.10) and (3.11) we get from this long

range model compared with those we got within the Hubbard model (2.39) and (2.42)

we see that while in the latter the coefficient of the order g2L wrapping correction to the

energy exhibited a strong L dependence, from factors like cosL(p/2), in the former this

coefficient is L independent and generically of order 1. If this feature is generic then the
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weak or strong L dependence of the g2L prefactors to the corrections of 2 magnons states

in N = 4 super Yang-Mills could be a sign, respectively, of a fundamental description in

terms of a long ranged exact integrable Hamiltonian or of a local description in terms of

an hidden level of particles in the Beisert-Staudacher nested Bethe ansatz equations. In

this context, the perturbative computation of [18] and [19], if generalized to a more general

setup with 2 magnons and generic L could provide very useful hints about the nature of

the fundamental integrable structure of N = 4 super Yang-Mills.

3.1 Generalizations and transcendentality

In the previous section we saw that we could easily generate (long-ranged) integrable

Hamiltonians by considering

Ĥ =
1

4i

∞
∑

n=1

an
g2n

n!

dn

dλn
log T̂ (λ)

∣

∣

∣

∣

∣

λ=0

+ h.c. (3.12)

The spectrum of such Hamiltonians is immediately given by this expression with the oper-

ator T̂ (λ) replaced by the corresponding eigenvalue (3.2). At order g2n these Hamiltonians

are local with interactions of range n. If we truncate the expansion at a given order m by

setting an>m = 0, then for chains of length larger than m we have no wrapping interactions

and the energy is simply given by a sum of dispersion relations
∑

j ǫ(pj), with11

ǫ(u) =
1

2i

∞
∑

n=1

an g
2n

n

(

1

(u− i/2)n −
1

(u+ i/2)n

)

(3.13)

If, on the other hand, we consider an infinie sum or, alternatively, if we truncate the

expansion in g2 at an order m > L, the spectrum (starting at wrapping order g2L) will no

longer be a sum of individual dispersion relations. In particular, precisely at order g2L we

obtain

E =

M
∑

j=1

ǫ(uj) +
g2L

4i





aL

iL
e−iP

M
∏

j=1

uj − 3i/2

uj + i/2
− c.c.



 +O(g2L+2) (3.14)

where the second term takes into account the wrapping interactions. It is interesting

to notice that for all these families of long ranged Hamiltonians the expression for the

wrapping interactions is quite simple and absolutely universal. The example (3.5) we

considered corresponds to an = 1 but as we see any choice of an will lead to a solvable

problem. A particularly funny example would be

Ĥ =
1

2i

∞
∑

n=1

Cn
g2n

(2n− 1)!

d2n

dλ2n
log T̂ (λ)

∣

∣

∣

∣

∣

λ=0

+ h.c. ,

with Cn the Catalan numbers, for which we find the curious expression

ǫ(u) =
g

i

(

1

X+(u)
− 1

X−(u)

)

, X±(u) ≡
u± i

2 +

√

(

u± i
2

)2 − 4g2

2g

11If the an are not real — which from the definition 3.12 is a perfectly reasonable possibility — we should

take the real part of this expression.
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for the dispersion relation. As a function of the Bethe roots this is precisely the dispersion

relation appearing in the BDS equations [4] and even in the full AdS/CFT Bethe equa-

tions [8]. However, unfortunately, as a function of the magnon momenta this is not the

same as (2.10) because the relation between u and p in our toy models is always of the

form (3.4) instead of (2.12). In other words, although the desired dispersion relation can

easily be obtained, the Bethe roots are always quantized via the usual Heisenberg spin

chain Bethe equations.

We can generalize this construction of long ranged Hamiltonians for other symmetry

groups as well. For example, for SU(N) the transfer matrix in the fundamental represen-

tation takes exactly the same form (3.1) as for the SU(2) chains except that the operators

being multiplied now live in hj ⊗ h0 where both h0 and hj are copies of C
N . Thus, we can

still consider Hamiltonians of the form (3.5) with a g2 perturbative expansion (3.6). As

before, they will be long ranged Hamiltonians where the Hamiltonian range at order g2n is

n. The only thing that changes is the expression for the eigenvalue (3.2). For an SU(N)

spin chain we have N − 1 types of roots and Kn Bethe roots of the type n = 1, . . . , N − 1.

The transfer matrix eigenvalue reads12

TSU(N)(λ) =

K1
∏

j=1

λ− u(1)
j − i/2

λ− u(1)
j + i/2

+

(

λ

i+ λ

)L N−1
∑

n=1

Kn
∏

j=1

λ− u(n)
j + n+2

2 i

λ− u(n)
j + n

2 i

Kn+1
∏

j=1

λ− u(n+1)
j + n−1

2 i

λ− u(n+1)
j + n+1

2 i

We see again that when we compute the first few local charges expanding log T (u) around

u = 0 only the first term gives a non-vanishing contribution. As before we can consider

Hamiltonians of the form (3.12). The dispersion relation for the SU(N) magnons is ex-

actly the same as for SU(2) while the leading wrapping correction to the spectrum can be

computed as before to yield the generalization of (3.14),

E =

K1
∑

j=1

ǫ(u
(1)
j )+

g2L

4i





aL

iL
e−iP

N−1
∑

n=1

Kn
∏

j=1

u
(n)
j − n+2

2 i

u
(n)
j − n

2 i

Kn+1
∏

j=1

u
(n+1)
j − n−1

2 i

u
(n+1)
j − n+1

2 i
− c.c.



+O(g2L+2) .

where again P = 1
i

∑

j log
u
(1)
j +i/2

u
(1)
j −i/2

is the state total momentum.

All these considerations can be trivially generalized both to non-compact spin chains

and to supersymmetric ones. For example, for the SL(2) spin chain we have [61, 62]

Tsl(2)(λ) =

M
∏

j=1

λ− uj − i/2
λ− uj + i/2

+

∞
∑

n=1

(

λ

in+ λ

)L M
∏

j=1

(λ− uj − i/2)2
(

λ− uj + 2n−1
2 i
) (

λ− uj + 2n+1
2 i
)

(3.15)

12The SU(N) Bethe equations can be immediatly obtained by canceling the apparent λ poles in this

expression.
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with the Bethe equations, following from canceling the poles in this expression, reading

(

uj + i/2

uj − i/2

)L

=
M
∏

k 6=j

uj − uk − i
uj − uk + i

(3.16)

which differ from (3.3) by a simple sign in the r.h.s. Again, by expanding the log of the

transfer matrix around λ = 0 we see that only the first term contributes until the L’th

derivative is taken. Thus if we consider an Hamiltonian of the form (3.12) we will have, up

to order g2L, the energy as a sum of the same dispersion relations (3.13). In particular if

the constants an are algebraic numbers then so will be
∑

j ǫ(uj) when truncated to order

g2L because clearly the solutions to (3.16) are also algebraic (complex) numbers.

However, precisely at order g2L the second term in (3.15) starts contributing and we

find

E =

M
∑

j=1

ǫ(uj) +
g2L

4i





aL

iL
e−iP

∞
∑

n=1

1

nL

M
∏

j=1

(uj + i/2)2

(

uj − 2n−1
2 i
) (

uj − 2n+1
2 i
) − c.c.



 . (3.17)

This new wrapping term differs from the one computed for the compact groups SU(N) by

the fact that it is given by an infinite sum of terms. Thus even if uj and an are perfectly

algebraic numbers the energy of this state will only be algebraic up to order g2L, when this

infinite sum will give a transcendental contribution!

Let us consider a few examples. We chose aL = 1 for simplicity. For L = 4 the one

magnon state with momentum 2π/4 will be corrected to

E = ǫ(p)− g6 (1− ζ(3)) +O(g8)

while for example for a two magnon state with L = 5 and momenta13 p1 = −p2 = p = 2π/6

we get

E = ǫ(p) + ǫ(−p) +
g10

4
(1− 2ζ(3) + 2ζ(5)) +O(g12)

In table 1 in the introduction we listed a couple of additional examples.

Although, this model is not immediately related to the (non-compact sector of)

AdS/CFT Bethe equations which are much more complicated than (3.16), it is still in-

teresting to see that transcendentality very naturally appears due to the non-compact

nature of the transfer matrix. In particular, if an extra level of hidden degrees of freedom

is to be discovered then the transcendental numbers present in the dressing factor could

be an important hint. A more fundamental PSU(2, 2|4) symmetric transfer matrix in the

field strength representation would also be given by an infinite sum of terms since the rep-

resentation is infinite dimensional. It would be spectacular if a relatively simple extended

transfer matrix with some extra degrees of freedom included and only simple algebraic

13For two magnon with opposite momenta the sl(2) equations are trivially solved exactly as explained

in the end of section 2.3.3 for the su(2) chain. For the non-compact chain the effect of the second magnon

is simply to renormalize L → L + 1 instead of L → L − 1 as we had for the SU(2) chain. Thus we obtain

p1 = −p2 = 2πn
L+1

for the two magnon state with opposite symmetric momenta.
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expressions could lead to the intricate structure of the full dressing factor where transcen-

dental numbers abound. Probably the correct place to try to reverse engineer and find this

extra level of hidden particles is the transfer matrix rather than the Bethe equations.
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A. Wave function of the Hubbard magnon

In this section we shall study states made out of two fundamental particles o and l,

|Ψ〉 =
∑

n,n′

ψ(n, n′)
(

a†n,la
†
n′,o

)

| ↑ . . . ↑〉 .

Acting on this state with the Hamiltonian (2.1) we can find the form of the wave function

ψ(n, n′) so that the state is an eigenstate,

H|Ψ〉 = E|Ψ〉 .

This gives the equation

E ψ(n, n′) = −t
[

eiφlψ(n + 1, n′) + e−iφlψ(n − 1, n′) (A.1)

+eiφoψ(n, n′ + 1) + e−iφoψ(n, n′ − 1)
]

(E + U)ψ(n, n) = −t
[

eiφlψ(n + 1, n) + e−iφlψ(n− 1, n) (A.2)

+eiφoψ(n, n + 1) + e−iφoψ(n, n− 1)
]

with n′ 6= n. A plane wave superposition

ψ(n, n′) = e−iφln−iφon′
(

Aeiqn+iq′n′
+Beiq

′n+iqn′
)

, n < n′ (A.3)

ψ(n, n′) = e−iφln−iφon′
(

Ceiqn+iq′n′
+Deiq

′n+iqn′
)

, n > n′ (A.4)

solves the first equation and yields

E = −2 t cos(q)− 2 t cos(q′) .

Continuity of the wave function at n = n′ gives

A+B = C +D
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and the second equation reduces to

A
(

2g sin(q)− 2g sin(q′)− i
)

= C
(

2g sin(q)− 2g sin(q′)
)

+ iB . (A.5)

In an infinitely large volume we might look for bound states with exponentially decaying

wave functions. These are only possible if two of the exponentials in (A.3) and (A.4)

disappear. Parametrizing the momenta as q = p/2 − iβ and q′ = p/2 + iβ we see that we

need B = C = 0 and A = D 6= 0. Then equation (A.5) fixes

sinhβ = sinhβ∞ ≡ −
1

4g cos p
2

(A.6)

in which case

ψ(n, n′) = e−iφln−iφon′
ei

p

2
(n+n′)e−β|n−n′|

and the energy (A.5) reads

E = ǫ∞(p) ≡ −4t cos
p

2
cosh β∞ = −U

√

1 + 16g2 cos2
p

2
.

Comparing with the energy (A.5) of two particles with momentum p/2 we conclude that

the magnon has a relative binding energy

cosh β − 1 .

On the other hand, at finite volume we impose periodicity

ψ(n+ L, n′) = ψ(n, n′) , n < n′ < n+ L

and

ψ(n, n′ + L) = ψ(n, n′) , n′ < n < n′ + L

of the wave function to obtain

Cei(q−φl)L = A , Dei(q
′−φl)L = B

and

Aei(q
′−φo)L = C , Bei(q−φo)L = D

This immediately gives total momentum quantization

ei(q+q′−φl−φo)L = 1

and the relation
B

C
=

1− ei(q−φl)L

1− ei(q−φo)L

From (A.5) we obtain

ei(q−φl)L =
2g sin(q)− 2g sin(q′) + i1−e

i(q−φl)L

1−ei(q−φo)L

2g sin(q)− 2g sin(q′)− i
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which can be rewritten as

ei(q−φo)L =
g (sin(q)− sin(q′))

(

1 + ei(φl−φo)L
)

2g sin(q)− 2g sin(q′)− i

+

√

g2 (sin(q)− sin(q′))2
(

1− ei(φl−φo)L
)2
− ei(φl−φo)L

2g sin(q)− 2g sin(q′)− i

This is precisely what one obtains from the Lieb-Wu equations (2.4) for the Bethe roots

q, q′, u eliminating the auxiliar variable u using its Bethe equation. Moreover, in the case

of identical twists this becomes the simple S-matrix

ei(q−φo)L =
2g sin(q)− 2g sin(q′) + i

2g sin(q)− 2g sin(q′)− i

If again we look for solutions in the form q = p/2− iβ and q′ = p/2 + iβ so that

E = ǫ(p) = −4t cos
p

2
cosh β ,

we obtain

ei(p−φo−φl)L = 1 (A.7)

and

4g cos
p

2
sinhβ = − sinh(βL)

cosh(βL)− cosL
(p

2 − φo

) .

Notice that the result is symmetric under the exchange of twists since (A.7) implies

cosL
(p

2
− φo

)

= cosL
(p

2
− φl

)

= cos
L

2

(

φl − φo

)

.

In the case of equal twists the expression reduces to

4g cos
p

2
sinhβ = − sinh(βL)

cosh(βL)± 1
,

and for BDS twists obeying eiL(φo−φl) = −1 gives

4g cos
p

2
sinhβ = − tanh (βL) .

In any case, for large L the r.h.s. can be replaced by −1 and we recover the infinite volume

result (A.6).

B. Dressed BDS BAE with twists

This appendix complements the computations and results of sections (2.3.1) and (2.3.3).

As we see from (2.34), (2.36) and (2.32) a crucial quantity we need to compute the leading

wrapping corrections is ∆n defined in (2.31). To compute ∆n we focus on the equation for
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a single constituent of the Takahashi triplet, say on equation (2.23) for qn. Expanding this

equation using (2.31) and (2.33) yields

∆n ≃ ∆(0)
n ≡ iei(

pn
2

+iβn−φo)L
M
∏

m6=n

u∞m − u∞m + i

u∞m − u∞m
= O(e−βnL) , (B.1)

to leading order. However, as seen from the above mentioned equations (2.34), (2.36)

and (2.32) what we really need is the imaginary part of ∆n. Due to the corrected BDS

equations (2.34) the imaginary part of ∆
(0)
n is of order e−βnL for generic twists and of order

e−3βnL when (2.5). Indeed , the imaginary part of ∆
(0)
n can be simplified using the BDS

corrected equations (2.34) to give

ℑ (∆(0)
n ) ≃ −i∆(0)

n ei(φo−φl)L
2 cos

L

2
(φo − φl) (B.2)

which indeed vanishes when (2.5). Thus, in this case we need to expand the equations for

qn further,

∆n ≃ ∆(0)
n − i





(

∆(0)
n

)2
+

M
∑

m6=n

∆
(0)
n ∆

(0)
m

(u∞m − u∞n )(u∞m − u∞n + i)



 . (B.3)

To find the corrected BDS equations we multiply the equations for the Takahashi triplet

to get

ei(pn−φl−φo)L
∏

m6=n

u∞n − u∞m − i
u∞n − u∞m + i

=

M
∏

m=1

u∞n − u∞m − i
u∞n − u∞m + i

un − um − i
un − um + i

rm,n

rn,m

rm,n+M

rn,m+M
(B.4)

where

rn,m ≡
un − 2g sin qm − i/2
un − 2g sin qm + i/2

. (B.5)

Notice that so far no approximation whatsoever was done and (B.4) is an exact relation.

Expanding now the r.h.s. of (B.4) using (2.31) and (2.33) we find the corrected (twisted)

BDS equations (2.34)

Again, when the twists are chosen as in (2.5) we need to be more careful and expand

our expressions further. By expanding the product of the equations for the Takahashi

triplet to order e−2βL we get the same (2.34) with

φnm = − ℑ(∆n)

(un − um)2 + 1

(

1

un
tan2 pn

2
+

2

un − um

)

+
2(un − um)∆n∆m

((un − um)2 + 1)2
− (n↔ m)(B.6)

instead of (2.35).

Finally, in (2.36) the energy is corrected because the momenta change (the second

term) and because the functional dependence on the momenta changes (the first term). For

completeness let us mention why the correction due to the change in functional dependence

is so simple. This is simply because

−4t cos
pn

2
cosh (β∞(pn) + δβn) = −U

(

−4g cos
p∞n
2

sinhβ∞(p∞n )

)

δβn = −Uδβn (B.7)

since −4g cos p∞n
2 sinhβ∞(p∞n ) = 1.
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C. Luscher with magnon-magnon S-matrix at strong coupling

In this appendix we expand the results of [30]14 concerning the BDS Luscher term to the

next order in 1/g. The computation in question is the µ-term

δǫ(p) =
1

2
Resk=k∗eiLk

[

ǫ′(p)− ǫ′(k)
] u(p)− u(k) + i

u(p)− u(k)− i + c.c.

= eiLk∗ [

ǫ′(p)− ǫ′(k∗)
] i

−u′(k∗) + c.c.

where

u(p) =
1

2
tan

p

2

√

1 + 16g2 cos2
p

2

and k∗ is defined by the pole condition

u(p)− u(k∗) + i = 0 .

For large g, this gives

k∗ = π +
i

2g
sec

p

2
+

1

4g2
tan

p

2
sec2 p

2
+

i

384g3
(23 cos p− 49) sec5 p

2
+ . . .

which yields

δǫ(p) = ℜ
(

−U
g

sec
p

2
+
iU

g2
tan

p

2
sec2 p

2
+ . . .

)

exp− L
2g

sec
p

2

(

1− i

2g
tan

p

2
sec

p

2
+ . . .

)
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